Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption

Opt Express. 2014 May 19;22(10):12678-90. doi: 10.1364/OE.22.012678.

Abstract

Pyramidal metamaterials are currently developed for ultra-broadband absorbers. They consist of periodic arrays of alternating metal/dielectric layers forming truncated square-based pyramids. The metallic layers of increasing lengths play the role of vertically and, to a less extent, laterally coupled plasmonic resonators. Based on detailed numerical simulations, we demonstrate that plasmon hybridization between such resonators helps in achieving ultra-broadband absorption. The dipolar modes of individual resonators are shown to be prominent in the electromagnetic coupling mechanism. Lateral coupling between adjacent pyramids and vertical coupling between alternating layers are proven to be key parameters for tuning of plasmon hybridization. Following optimization, the operational bandwidth of Au/Ge pyramids, i.e. the bandwidth within which absorption is higher than 90%, extends over a 0.2-5.8 µm wavelength range, i.e. from UV-visible to mid-infrared, and total absorption (integrated over the operational bandwidth) amounts to 98.0%. The omni-directional and polarization-independent high-absorption properties of the device are verified. Moreover, we show that the choice of the dielectric layer material (Si versus Ge) is not critical for achieving ultra-broadband characteristics, which confers versatility for both design and fabrication. Realistic fabrication scenarios are briefly discussed. This plasmon hybridization route could be useful in developing photothermal devices, thermal emitters or shielding devices that dissimulate objects from near infrared detectors.

Publication types

  • Research Support, Non-U.S. Gov't