Albumin-fatty acid interactions at monolayer interface

Nanoscale Res Lett. 2014 May 7;9(1):218. doi: 10.1186/1556-276X-9-218. eCollection 2014.

Abstract

The fluid mosaic model of Singer and Nicolson in 1972 shows how proteins are embedded in membranes. To elucidate the interactions between proteins and the surrounding lipids, stearic acid (SA) and bovine serum albumin (BSA) were used as lipid-protein components to mimic the normal membrane bilayer environment using the Langmuir-Blodgett technique. Surface pressure (π)-molecular area (A) isotherms were recorded for the SA monolayer in the presence of BSA on water. The mixed monolayer was successfully transferred onto an oxidized silicon wafer and imaged by tapping mode atomic force microscopy (AFM). Miscibility, compressibility and thermodynamic stability of the mixed system were examined. A large negative deviation of A ex, together with the minimum value of ΔG ex, was observed when the mole fraction of BSA (X BSA) was 0.8, indicating this to be the most stable mixture. In a compressibility analysis, X BSA was observed at below 50 mN m(-1), denoting a liquid-expanded phase and showing the occurrence of a strong interaction of SA with BSA molecules in this phase. AFM observations supported the quantitative data indicating that BSA was strongly attracted onto the membrane surface as predicted.

Keywords: Atomic force microscopy; Bovine serum albumin; Langmuir; Lipid-protein interaction; Protein; Stearic acid.