Differences in proton pumping and Na/H exchange at the leaf cell tonoplast between a halophyte and a glycophyte

AoB Plants. 2014 May 20:6:plu023. doi: 10.1093/aobpla/plu023.

Abstract

The tonoplast Na(+)/H(+) antiporter and tonoplast H(+) pumps are essential components of salt tolerance in plants. The objective of this study was to investigate the transport activity of the tonoplast Na(+)/H(+) antiporter and the tonoplast V-H(+)-ATPase and V-H(+)-PPase in a highly tolerant salt-accumulating halophyte, Salicornia dolichostachya, and to compare these transport activities with activities in the related glycophyte Spinacia oleracea. Vacuolar membrane vesicles were isolated by density gradient centrifugation, and the proton transport and hydrolytic activity of both H(+) pumps were studied. Furthermore, the Na(+)/H(+)-exchange capacity of the vesicles was investigated by 9-amino-6-chloro-2-methoxyacridine fluorescence. Salt treatment induced V-H(+)-ATPase and V-H(+)-PPase activity in vesicles derived from S. oleracea, whereas V-H(+)-ATPase and V-H(+)-PPase activity in S. dolichostachya was not affected by salt treatment. Na(+)/H(+)-exchange capacity followed the same pattern, i.e. induced in response to salt treatment (0 and 200 mM NaCl) in S. oleracea and not influenced by salt treatment (10 and 200 mM NaCl) in S. dolichostachya. Our results suggest that S. dolichostachya already generates a high tonoplast H(+) gradient at low external salinities, which is likely to contribute to the high cellular salt accumulation of this species at low external salinities. At high external salinities, S. dolichostachya showed improved growth compared with S. oleracea, but V-H(+)-ATPase, V-H(+)-PPase and Na(+)/H(+)-exchange activities were comparable between the species, which might imply that S. dolichostachya more efficiently retains Na(+) in the vacuole.

Keywords: Halophyte; NHX1; Salicornia; V-H+-ATPase; V-H+-PPase.; membrane transport; salt tolerance; vacuole.