Cardiomyocyte-derived mitochondrial superoxide causes myocardial electrical remodeling by downregulating potassium channels and related molecules

Circ J. 2014;78(8):1950-9. doi: 10.1253/circj.cj-13-1587. Epub 2014 May 23.

Abstract

Background: This study was designed to investigate the role of a primary hyperoxidative stress in myocardial electrical remodeling using heterozygous heart/muscle-specific manganese superoxide dismutase-deficient (H/M-Sod2(+/-)) mice treated with L-buthionine-sulfoximine (BSO).

Methods and results: Both H/M-Sod2(+/-)and wild-type (WT) mice were treated with intra-peritoneal BSO or saline for 7 days, and divided into 4 groups: H/M-Sod2(+/-)+BSO, WT+BSO, H/M-Sod2(+/-)control, and WT control. The ventricular effective refractory period (ERP) and the monophasic action potential duration (MAPD) were determined. Levels of oxidative stress, potassium channel-related molecules, and K(+)channel-interacting protein-2 (KChIP2) were also evaluated. The H/M-Sod2(+/-)+BSO group exhibited markedly prolonged MAPD20, MAPD90 and ERP in comparison with the other groups (MAPD20: 14 ± 1 vs. 11 ± 1 ms, MAPD90: 77 ± 7 vs. 58 ± 4 ms, ERP: 61 ± 6 vs. 41 ± 3 ms, H/M-Sod2(+/-)+BSO vs. WT control; P<0.05). Mitochondrial superoxide and hydrogen peroxide formation in the myocardium increased in the H/M-Sod2(+/-)+BSO group in comparison with the WT+BSO group (P<0.05). Real-time RT-PCR and Western blotting revealed that Kv4.2 expression was downregulated in both BSO-treated groups, whereas KChIP2 expression was downregulated only in the H/M-Sod2(+/-)+BSO group (P<0.05).

Conclusions: BSO treatment caused hyperoxidative stress in the myocardium of H/M-Sod2(+/-)mice. Changes in the expression and function of potassium channels were considered to be involved in the mechanism of electrical remodeling in this model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimetabolites / pharmacology
  • Buthionine Sulfoximine / pharmacology
  • Down-Regulation*
  • Hydrogen Peroxide / metabolism
  • Kv Channel-Interacting Proteins / biosynthesis*
  • Kv Channel-Interacting Proteins / genetics
  • Mice
  • Mice, Knockout
  • Mitochondria, Heart / metabolism*
  • Myocardium / metabolism*
  • Myocytes, Cardiac
  • Oxidative Stress*
  • Shal Potassium Channels / biosynthesis*
  • Shal Potassium Channels / genetics
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism
  • Superoxides / metabolism*

Substances

  • Antimetabolites
  • Kcnip2 protein, mouse
  • Kv Channel-Interacting Proteins
  • Shal Potassium Channels
  • Superoxides
  • Buthionine Sulfoximine
  • Hydrogen Peroxide
  • Superoxide Dismutase
  • superoxide dismutase 2