Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae

Metab Eng. 2014 Jul:24:117-28. doi: 10.1016/j.ymben.2014.05.009. Epub 2014 May 14.

Abstract

Maintaining cofactor balance is a critical function in microorganisms, but often the native cofactor balance does not match the needs of an engineered metabolic flux state. Here, an optimization procedure is utilized to identify optimal cofactor-specificity "swaps" for oxidoreductase enzymes utilizing NAD(H) or NADP(H) in the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae. The theoretical yields of all native carbon-containing molecules are considered, as well as theoretical yields of twelve heterologous production pathways in E. coli. Swapping the cofactor specificity of central metabolic enzymes (especially GAPD and ALCD2x) is shown to increase NADPH production and increase theoretical yields for native products in E. coli and yeast--including L-aspartate, L-lysine, L-isoleucine, L-proline, L-serine, and putrescine--and non-native products in E. coli-including 1,3-propanediol, 3-hydroxybutyrate, 3-hydroxypropanoate, 3-hydroxyvalerate, and styrene.

Keywords: Cofactor balancing; Constraint-based modeling; Escherichia coli; MILP; Metabolic engineering; Saccharomyces cerevisiae; Theoretical yield.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxybutyric Acid / biosynthesis
  • Amino Acids / biosynthesis
  • Amino Acids / genetics
  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Lactic Acid / analogs & derivatives
  • Lactic Acid / biosynthesis
  • NAD* / genetics
  • NAD* / metabolism
  • NADP* / genetics
  • NADP* / metabolism
  • Oxidoreductases* / genetics
  • Oxidoreductases* / metabolism
  • Pentanoic Acids / metabolism
  • Propylene Glycols / metabolism
  • Putrescine / biosynthesis
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Styrene / metabolism

Substances

  • Amino Acids
  • Escherichia coli Proteins
  • Pentanoic Acids
  • Propylene Glycols
  • Saccharomyces cerevisiae Proteins
  • NAD
  • beta-hydroxyvaleric acid
  • Lactic Acid
  • Styrene
  • NADP
  • 1,3-propanediol
  • hydracrylic acid
  • Oxidoreductases
  • 3-Hydroxybutyric Acid
  • Putrescine