Development of rapidly evolving intron markers to estimate multilocus species trees of rodents

PLoS One. 2014 May 7;9(5):e96032. doi: 10.1371/journal.pone.0096032. eCollection 2014.

Abstract

One of the major challenges in the analysis of closely related species, speciation and phylogeography is the identification of variable sequence markers that allow the determination of genealogical relationships in multiple genomic regions using coalescent and species tree approaches. Rodent species represent nearly half of the mammalian diversity, but so far no systematic study has been carried out to detect suitable informative markers for this group. Here, we used a bioinformatic pipeline to extract intron sequences from rodent genomes available in databases and applied a series of filters that allowed the identification of 208 introns that adequately fulfilled several criteria for these studies. The main required characteristics of the introns were that they had the maximum possible mutation rates, that they were part of single-copy genes, that they had an appropriate sequence length for amplification, and that they were flanked by exons with suitable regions for primer design. In addition, in order to determine the validity of this approach, we chose ten of these introns for primer design and tested them in a panel of eleven rodent species belonging to different representative families. We show that all these introns can be amplified in the majority of species and that, overall, 79% of the amplifications worked with minimum optimization of the annealing temperature. In addition, we confirmed for a pair of sister species the relatively high level of sequence divergence of these introns. Therefore, we provide here a set of adequate intron markers that can be applied to different species of Rodentia for their use in studies that require significant sequence variability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Computational Biology / methods*
  • Introns / genetics
  • Likelihood Functions
  • Mice
  • Phylogeny
  • Temperature

Grants and funding

This work was funded by grant numbers CGL2008-00434/BOS and CGL2011-22640/BOS from the Plan Nacional I+D+I of the Ministerio de Economía y Competitividad (Spain) to JC. ARP was supported by fellowship BES-2009-029432 of the Ministerio de Economía y Competitividad (Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.