Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles

Pest Manag Sci. 2015 May;71(5):686-93. doi: 10.1002/ps.3821. Epub 2014 Jun 3.

Abstract

Background: Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops.

Results: The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction.

Conclusion: Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores.

Keywords: cotton; homoterpenes; indole; parasitoid attraction; plant strengtheners; volatile organic compounds.

MeSH terms

  • Animals
  • Glucans / pharmacology*
  • Gossypium / drug effects
  • Gossypium / metabolism*
  • Gossypium / parasitology
  • Herbivory
  • Larva / physiology
  • Moths / physiology*
  • Odorants
  • Thiadiazoles / pharmacology*
  • Volatile Organic Compounds / metabolism*
  • Wasps / physiology*

Substances

  • Glucans
  • Thiadiazoles
  • Volatile Organic Compounds
  • laminaran
  • S-methyl benzo(1,2,3)thiadiazole-7-carbothioate