Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser

Appl Opt. 2014 Apr 10;53(11):2352-6. doi: 10.1364/AO.53.002352.

Abstract

A simple photonic approach to generate microwave frequency switched microwave signal is proposed and experimentally demonstrated. In this scheme, a Brillouin fiber laser with double-Brillouin-frequency spacing is used. The Brillouin ring configuration suppresses incoming Brillouin pump and even-order Stokes signals in the cavity. In addition, it also allows propagation of the odd-order Brillouin Stokes signals from configuration to output coupler. A dual-wavelength optical signal is heterodyned at the high-speed photodetector to produce a microwave signal. Frequency switched microwave signals, at 10.75 and 21.39 GHz, respectively, can be obtained through adjusting the polarization controller (PC) and loss of the variable optical attenuator (VOA).