Colchicine effect on P-glycoprotein expression and activity: in silico and in vitro studies

Chem Biol Interact. 2014 Jul 25:218:50-62. doi: 10.1016/j.cbi.2014.04.009. Epub 2014 Apr 20.

Abstract

Colchicine is a P-glycoprotein (P-gp) substrate that induces its expression, thus increasing the risk for unexpected pharmacokinetic interactions with this drug. Because increased P-gp expression does not always correlate with increased activity of this efflux pump, we evaluated the changes in both P-gp expression and activity induced by colchicine using an in vitro model. Caco-2 cells were incubated with 0.1-100 μM colchicine up to 96 h. Cytotoxicity was evaluated by the MTT and LDH leakage assays, P-gp expression and activity were evaluated by flow cytometry and P-gp ATPase activity was measured in MDR1-Sf9 membrane vesicles. Furthermore, colchicine fitting in P-gp induction and competitive inhibition pharmacophore hypothesis, and docking studies evaluating the interaction between colchicine and P-gp drug binding pocket were tested in silico. Significant cytotoxicity was noted after 48 h. At 24 h a significant increase in P-gp expression was observed, which was not accompanied by an increase in transport activity. Moreover, colchicine significantly increased P-gp ATPase activity, demonstrating to be actively transported by the pump. New pharmacophores were constructed to predict P-gp modulatory activity. Colchicine fitted both the P-gp induction and competitive inhibition models. In silico, colchicine was predicted to bind to the P-gp drug-binding pocket suggesting a competitive mechanism of transport. These results show that colchicine induced P-gp expression in Caco-2 cells but the activity of the protein remained unchanged, highlighting the need to simultaneously evaluate P-gp expression and activity. With the newly constructed pharmacophores, new drugs can be initially screened in silico to predict such potential pharmacokinetic interactions.

Keywords: ATPase activity; Caco-2 cells; Colchicine; In silico; P-glycoprotein induction; P-glycoprotein transport activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / antagonists & inhibitors
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • Binding, Competitive / drug effects
  • Caco-2 Cells
  • Colchicine / pharmacology*
  • Computer Simulation
  • Flow Cytometry
  • Gene Expression Regulation / drug effects*
  • Humans
  • Models, Biological

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Colchicine