Mass accuracy and isotopic abundance measurements for HR-MS instrumentation: capabilities for non-targeted analyses

J Am Soc Mass Spectrom. 2014 Jul;25(7):1285-94. doi: 10.1007/s13361-014-0880-5. Epub 2014 Apr 12.

Abstract

The development of automated non-targeted workflows for small molecule analyses is highly desirable in many areas of research and diagnostics. Sufficient mass and chromatographic resolution is necessary for the detectability of compounds and subsequent componentization and interpretation of ions. The mass accuracy and relative isotopic abundance are critical in correct molecular formulae generation for unknown compounds. While high-resolution instrumentation provides accurate mass information, sample complexity can greatly influence data quality and the measurement of compounds of interest. Two high-resolution instruments, an Orbitrap and a Q-TOF, were evaluated for mass accuracy and relative isotopic abundance with various concentrations of a standard mixture in four complex sample matrices. The overall average ± standard deviation of the mass accuracy was 1.06 ± 0.76 ppm and 1.62 ± 1.88 ppm for the Orbitrap and the Q-TOF, respectively; however, individual measurements were ± 5 ppm for the Orbitrap and greater than 10 ppm for the Q-TOF. Relative isotopic abundance measurements for A + 1 were within 5% of the theoretical value if the intensity of the monoisotopic peak was greater than 1E7 for the Orbitrap and 1E5 for the Q-TOF, where an increase in error is observed with a decrease in intensity. Furthermore, complicating factors were found in the data that would impact automated data analysis strategies, including coeluting species that interfere with detectability and relative isotopic abundance measurements. The implications of these findings will be discussed with an emphasis on reasonable expectations from these instruments, guidelines for experimental workflows, data analysis considerations, and software design for non-targeted analyses.

MeSH terms

  • Dimensional Measurement Accuracy
  • Isotopes / analysis*
  • Isotopes / chemistry
  • Mass Spectrometry / methods*
  • Mass Spectrometry / standards*
  • Models, Theoretical*
  • Molecular Weight

Substances

  • Isotopes