Anti-cancer applications of titanocene-functionalised nanostructured systems: an insight into cell death mechanisms

Chemistry. 2014 Aug 18;20(34):10811-28. doi: 10.1002/chem.201400300. Epub 2014 Apr 8.

Abstract

A series of alkenyl-substituted titanocene compounds have been supported on the mesoporous silica-based material KIT-6. The corresponding functionalised materials were completely characterised by different techniques (solid-state multinuclear NMR spectroscopy, IR spectroscopy, N2 adsorption-desorption isotherms, X-ray fluorescence and diffraction, SEM and TEM) to observe the incorporation of the titanocene derivatives on the external surface of the material KIT-6. Both the titanocene compounds and the materials were tested in vitro against a wide variety of human cancer and normal cell lines. A very high cytotoxicity of the synthesised titanocene derivatives (IC50 values in the range of those described in the literature for the most active cytotoxic titanocene compounds), with selectivity towards cancer cell lines was observed. The cytotoxic activity of the materials is the highest reported to date for titanocene-functionalised materials. In addition, higher Ti uptake (from 4 to 23% of the initial amount of Ti) of the cells treated with materials was observed with respect to those treated with "free" titanocene derivatives (which gave Ti uptake values from 0.4 to 4.6% of the initial amount of Ti). Additional experiments with the titanocene derivatives and the functionalised materials revealed that changes to the morphological and functional dynamics of apoptosis occurred when the active titanocene species were incorporated into mesoporous materials. In addition, the materials could induce programmed cell death in tumour cell populations by impairing the damaged DNA repair mechanisms and by upregulation of intrinsic and extrinsic apoptotic signalling pathways.

Keywords: antitumour agents; apoptosis; cytotoxicity; mesoporous materials; titanium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cell Line
  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry
  • Coordination Complexes / pharmacology
  • Crystallography, X-Ray
  • HEK293 Cells
  • Humans
  • MCF-7 Cells
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure
  • Organometallic Compounds / chemistry*
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases / metabolism
  • Porosity
  • Silicon Dioxide / chemistry
  • bcl-X Protein / metabolism

Substances

  • Antineoplastic Agents
  • Coordination Complexes
  • Organometallic Compounds
  • Poly(ADP-ribose) Polymerase Inhibitors
  • bcl-X Protein
  • titanocene
  • Silicon Dioxide
  • PARP1 protein, human
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases