New nanostructured zinc phosphite templated by cetyltrimethylammonium cations: synthesis, crystal structure, adsorption, and photoluminescence properties

Inorg Chem. 2014 Apr 7;53(7):3266-8. doi: 10.1021/ic500068x. Epub 2014 Mar 24.

Abstract

Nanostructured zinc phosphite templated by cetyltrimethylammonium (CTA(+)) cations was synthesized using a hydro(solvo)thermal method. This is the first example of a crystalline metal phosphite containing long carbon tails of the CTA(+) ions as templates in its structure, as is structurally characterized by single-crystal X-ray diffraction. The 2D inorganic structures with 4.8(2) topologies are constructed from the interconnection of tetrahedral ZnO3Br and HPO3 units, which are sandwiched between CTA(+) ion surfactants in a packing behavior of a largely lamellar liquid-crystalline structure to extend the interlayer d spacing to 28.05 Å. Adsorption experiment shows selective adsorption properties of 1-naphthol and a adsorption capacity of 0.17 mmol/mmol (CTA)ZnBr(HPO3). This compound has potential as an adsorbent for the removal of 1-naphthol pollutant from wastewater. In addition, the naphthol-adsorbed sample shows interesting luminescent properties that are different from that of an as-synthesized sample. The crystal structure, thermal stability, IR spectrum, adsorption, and photoluminescence properties have been studied.