A remarkable solvent effect on the nuclearity of neutral titanium(IV)-based helicate assemblies

Chemistry. 2014 Apr 22;20(17):5092-101. doi: 10.1002/chem.201304317. Epub 2014 Mar 18.

Abstract

The spontaneous self-assembly of a neutral circular trinuclear Ti(IV) -based helicate is described through the reaction of titanium(IV) isopropoxide with a rationally designed tetraphenolic ligand. The trimeric ring helicate was obtained after diffusion of n-pentane into a solution with dichloromethane. The circular helicate has been characterized by using single-crystal X-ray diffraction study, (13) C CP-MAS NMR and (1) H NMR DOSY solution spectroscopic, and positive electrospray ionization mass-spectrometric analysis. These analytical data were compared with those obtained from a previously reported double-stranded helicate that crystallizes in toluene. The trimeric ring was unstable in a pure solution with dichloromethane and transformed into the double-stranded helicate. Thermodynamic analysis by means of the PACHA software revealed that formation of the double-stranded helicates was characterized by ΔH(toluene)=-30 kJ mol(-1) and ΔS(toluene)=+357 J K(-1) mol(-1) , whereas these values were ΔH(CH2 Cl2 )=-75 kJ mol(-1) and ΔS(CH2 Cl2 )=-37 J K(-1) mol(-1) for the ring helicate. The transformation of the ring helicate into the double-stranded helicate was a strongly endothermic process characterized by ΔH(CH2 Cl2 )=+127 kJ mol(-1) and ΔH(n-pentane)=+644 kJ mol(-1) associated with a large positive entropy change ΔS=+1115 J K(-1) ⋅mol(-1) . Consequently, the instability of the ring helicate in pure dichloromethane was attributed to the rather high dielectric constant and dipole moment of dichloromethane relative to n-pentane. Suggestions for increasing the stability of the ring helicate are given.

Keywords: NMR spectroscopy; helical structures; ligand design; self-assembly; titanium.