Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence

Phys Med Biol. 2014 Apr 7;59(7):1801-14. doi: 10.1088/0031-9155/59/7/1801. Epub 2014 Mar 14.

Abstract

Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing (ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient projection (GP) with a Barzilai-Borwein (BB) step-size selection scheme (GP-BB) to search for the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior. In this paper, we further improve the convergence of ABOCS using the unknown-parameter Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical patient data. Comparison studies are carried out on reconstructions of computer simulation, a physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using UPN show more stable and faster convergence than those of the GP-BB method and a state-of-the-art Bregman-type method. As shown in the simulation study of the Shepp-Logan phantom, UPN achieves the same image quality as those of GP-BB and the Bregman-type methods, but reduces the iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-backprojection reconstruction, the corresponding RRE is more than 15% on the same projection data. The superior performance of ABOCS with the UPN implementation is further demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed method reduces the RRE from 21% as in the filtered backprojection (FBP) results to 7.3%. In conclusion, we propose UPN for ABOCS implementation. As compared to GP-BB and the Bregman-type methods, the new method significantly improves the convergence with higher stability and fewer iterations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cone-Beam Computed Tomography / methods*
  • Head and Neck Neoplasms / diagnostic imaging
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Phantoms, Imaging