Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo

Inflammation. 2014 Oct;37(5):1389-400. doi: 10.1007/s10753-014-9863-8.

Abstract

Hyperoside, an active compound from the genera of Hypericum and Crataegus, was reported to have antioxidant, antihyperglycemic, anticancer, anti-inflammatory, and anticoagulant activities. Vascular inflammatory process has been suggested to play a key role in initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Thus, in this study, we attempted to determine whether hyperoside can suppress vascular inflammatory processes induced by high glucose (HG) in human umbilical vein endothelial cells (HUVECs) and mice. Data showed that HG induced markedly increased vascular permeability, monocyte adhesion, expressions of cell adhesion molecules (CAMs), formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB. Remarkably, all of the above-mentioned vascular inflammatory effects of HG were attenuated by pretreatment with hyperoside. Vascular inflammatory responses induced by HG are critical events underlying development of various diabetic complications; therefore, our results suggest that hyperoside may have significant therapeutic benefits against diabetic complications and atherosclerosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Capillary Permeability / drug effects
  • Capillary Permeability / physiology
  • Dose-Response Relationship, Drug
  • Glucose / administration & dosage
  • Glucose / toxicity*
  • Human Umbilical Vein Endothelial Cells / drug effects*
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Inflammation Mediators / antagonists & inhibitors*
  • Inflammation Mediators / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Plants*
  • Quercetin / analogs & derivatives*
  • Quercetin / pharmacology
  • Quercetin / therapeutic use

Substances

  • Inflammation Mediators
  • hyperoside
  • Quercetin
  • Glucose