Regenerative implants for cardiovascular tissue engineering

Transl Res. 2014 Apr;163(4):321-41. doi: 10.1016/j.trsl.2014.01.014. Epub 2014 Jan 30.

Abstract

A fundamental problem that affects the field of cardiovascular surgery is the paucity of autologous tissue available for surgical reconstructive procedures. Although the best results are obtained when an individual's own tissues are used for surgical repair, this is often not possible as a result of pathology of autologous tissues or lack of a compatible replacement source from the body. The use of prosthetics is a popular solution to overcome shortage of autologous tissue, but implantation of these devices comes with an array of additional problems and complications related to biocompatibility. Transplantation offers another option that is widely used but complicated by problems related to rejection and donor organ scarcity. The field of tissue engineering represents a promising new option for replacement surgical procedures. Throughout the years, intensive interdisciplinary, translational research into cardiovascular regenerative implants has been undertaken in an effort to improve surgical outcome and better quality of life for patients with cardiovascular defects. Vascular, valvular, and heart tissue repair are the focus of these efforts. Implants for these neotissues can be divided into 2 groups: biologic and synthetic. These materials are used to facilitate the delivery of cells or drugs to diseased, damaged, or absent tissue. Furthermore, they can function as a tissue-forming device used to enhance the body's own repair mechanisms. Various preclinical studies and clinical trials using these advances have shown that tissue-engineered materials are a viable option for surgical repair, but require refinement if they are going to reach their clinical potential. With the growth and accomplishments this field has already achieved, meeting those goals in the future should be attainable.

Publication types

  • Review

MeSH terms

  • Animals
  • Cardiovascular Diseases / therapy*
  • Humans
  • Regenerative Medicine / trends*
  • Tissue Engineering / methods*