In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation

PLoS One. 2014 Feb 27;9(2):e90340. doi: 10.1371/journal.pone.0090340. eCollection 2014.

Abstract

Hydrogen sulfide (H2S) is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in tomato (Solanum lycopersicum) roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO), and Ca(2+) in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca(2+) accumulation and CaM1 (calmodulin 1) expression could be abolished by inhibiting H2S synthesis. Ca(2+) chelator or Ca(2+) channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca(2+) in regulating lateral root formation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / metabolism
  • Calmodulin / metabolism
  • Dose-Response Relationship, Drug
  • Hydrogen Sulfide / metabolism*
  • Hydrogen Sulfide / pharmacology
  • Molecular Imaging*
  • Nitric Oxide / metabolism*
  • Plant Roots / drug effects
  • Plant Roots / genetics
  • Plant Roots / growth & development
  • Plant Roots / metabolism*
  • Solanum lycopersicum / genetics
  • Solanum lycopersicum / metabolism

Substances

  • Calmodulin
  • Nitric Oxide
  • Calcium
  • Hydrogen Sulfide

Grants and funding

This work was financed by the grant from the Hi-Tech R & D Program of China (2011AA10A202). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.