One-step transfer and integration of multifunctionality in CVD graphene by TiO₂/graphene oxide hybrid layer

Small. 2014 May 28;10(10):2057-66. doi: 10.1002/smll.201303541. Epub 2014 Feb 28.

Abstract

We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one-step transfer of CVD graphene and integration by introducing TiO2/graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic properties without an extra TiO2 removal and following deposition steps for multifunctional integration into devices because the thin TiO2 layer is optically transparent and electrically semiconducting. Moreover, the TiO2 layer induces charge screening by electrostatically interacting with the residual oxygen moieties on graphene, which are charge scattering centers, resulting in a reduced current hysteresis. Adsorption of water and other chemical molecules onto the graphene surface is also prevented by the passivating TiO2 layer, resulting in the long term environmental stability of the graphene under high temperature and humidity. In addition, the graphene/TiO2 film shows effectively enhanced photocatalytic properties because of the increase in the transport efficiency of the photogenerated electrons due to the decrease in the injection barrier formed at the interface between the F-doped tin oxide and TiO2 layers.

Keywords: graphene; graphene oxide; optoelectronic property; photocatalytic property; titanium dioxide.

Publication types

  • Research Support, Non-U.S. Gov't