Chemically orthogonal three-patch microparticles

Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2332-8. doi: 10.1002/anie.201310727. Epub 2014 Feb 14.

Abstract

Compared to two-dimensional substrates, only a few methodologies exist for the spatially controlled decoration of three-dimensional objects, such as microparticles. Combining electrohydrodynamic co-jetting with synthetic polymer chemistry, we were able to create two- and three-patch microparticles displaying chemically orthogonal anchor groups on three distinct surface patches of the same particle. This approach takes advantage of a combination of novel chemically orthogonal polylactide-based polymers and their processing by electrohydrodynamic co-jetting to yield unprecedented multifunctional microparticles. Several micropatterned particles were fabricated displaying orthogonal click functionalities. Specifically, we demonstrate novel two- and three-patch particles. Multi-patch particles are highly sought after for their potential to present multiple distinct ligands in a directional manner. This work clearly establishes a viable route towards orthogonal reaction strategies on multivalent micropatterned particles.

Keywords: click chemistry; electrohydrodynamic co-jetting; microparticles; orthogonal chemistry; surface chemistry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Click Chemistry / methods
  • Microspheres
  • Particle Size
  • Polyesters / chemistry*
  • Surface Properties

Substances

  • Polyesters
  • poly(lactide)