Fluid structure interaction (FSI) simulation of the left ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave)

Australas Phys Eng Sci Med. 2014 Jun;37(2):413-23. doi: 10.1007/s13246-014-0250-4. Epub 2014 Feb 26.

Abstract

In this paper, the hemodynamic characteristics inside a physiologically correct three-dimensional LV model using fluid structure interaction scheme are examined under various heart beat conditions during early filling wave (E-wave), diastasis and atrial contraction wave (A-wave). The time dependent and incompressible viscous fluid, nonlinear viscous fluid and the stress tensor equations are coupled with the full Navier-Stoke's equations together with the Arbitrary Lagrangian-Eulerian and elasticity in the solid domain are used in the analysis. The results are discussed in terms of the variation in the intraventricular pressure, wall shear stress (WSS) and the fluid flow patterns inside the LV model. Moreover, changes in the magnitude of displacements on the LV are also observed during diastole period. The results obtained demonstrate that the magnitude of the intraventricle pressure is found higher in the basal region of the LV during the beginning of the E-wave and A-wave, whereas the Ip is found much higher in the apical region when the flow propagation is in peak E-wave, peak A-wave and diastasis. The magnitude of the pressure is found to be 5.4E2 Pa during the peak E-wave. Additionally, WSS elevates with the rise in the E-wave and A-wave but the magnitude decreases during the diastasis phase. During the peak E-wave, maximum WSS is found to be 5.7 Pa. Subsequent developments, merging and shifting of the vortices are observed throughout the filling wave. Formations of clockwise vortices are evident during the peak E-wave and at the onset of the A-wave, but counter clockwise vortices are found at the end of the diastasis and at the beginning of the A-wave. Moreover, the maximum magnitude of the structural displacement is seen in the ventricle apex with the value of 3.7E-5 m.

MeSH terms

  • Algorithms
  • Computer Simulation
  • Heart Ventricles / anatomy & histology*
  • Hemodynamics / physiology
  • Humans
  • Models, Cardiovascular*
  • Ventricular Function / physiology*