A propagating ATPase gradient drives transport of surface-confined cellular cargo

Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4880-5. doi: 10.1073/pnas.1401025111. Epub 2014 Feb 24.

Abstract

The faithful segregation of duplicated genetic material into daughter cells is critical to all organisms. In many bacteria, the segregation of chromosomes involves transport of "centromere-like" loci over the main body of the chromosome, the nucleoid, mediated by a two-protein partition system: a nonspecific DNA-binding ATPase, ParA, and an ATPase stimulator, ParB, which binds to the centromere-like loci. These systems have previously been proposed to function through a filament-based mechanism, analogous to actin- or microtubule-based movement. Here, we reconstituted the F-plasmid partition system using a DNA-carpeted flow cell as an artificial nucleoid surface and magnetic beads coated with plasmid partition complexes as surface-confined cargo. This minimal system recapitulated directed cargo motion driven by a surface ATPase gradient that propagated with the cargo. The dynamics are consistent with a diffusion-ratchet model, whereby the cargo dynamically establishes, and interacts with, a concentration gradient of the ATPase. A chemophoresis force ensues as the cargo perpetually chases the ATPase gradient, allowing the cargo to essentially "surf" the nucleoid on a continuously traveling wave of the ATPase. Demonstration of this non-filament-based motility mechanism in a biological context establishes a distinct class of motor system used for the transport and positioning of large cellular cargo.

Keywords: ParA ATPase; bacterial chromosome segregation; protein gradients; spatial organization.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphatases / metabolism*
  • Animals
  • Bacterial Proteins / metabolism
  • Biological Transport
  • Cell Membrane / metabolism*
  • DNA, Bacterial / metabolism
  • Diffusion
  • Models, Biological
  • Plasmids / metabolism

Substances

  • Bacterial Proteins
  • DNA, Bacterial
  • Adenosine Triphosphatases