Compact piezoelectric transducer fiber scanning probe for optical coherence tomography

Opt Lett. 2014 Jan 15;39(2):186-8. doi: 10.1364/OL.39.000186.

Abstract

We developed a compact, optical fiber scanning piezoelectric transducer (PZT) probe for endoscopic and minimally invasive optical coherence tomography (OCT). Compared with previous forward-mount fiber designs, we present a reverse-mount design that achieves a shorter rigid length. The fiber was mounted at the proximal end of a quadruple PZT tube and scanned inside the hollow PZT tube to reduce the probe length. The fiber resonant frequency was 338 Hz using a 17-mm-long fiber. A 0.9 mm fiber deflection was achieved with a driving amplitude of 35 V. Using a GRIN lens-based optical design with a 1.3× magnification, a ∼6 μm spot was scanned over a 1.2 mm diameter field. The probe was encased in a metal hypodermic tube with a ∼25 mm rigid length and covered with a 3.2 mm outer diameter (OD) plastic sheath. Imaging was performed with a swept source OCT system based on a Fourier domain modelocked laser (FDML) light source at a 240 kHz axial scan rate and 8 μm axial resolution (in air). En face OCT imaging of skin in vivo and human colon ex vivo was demonstrated.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Colon
  • Equipment Design
  • Humans
  • Optical Fibers*
  • Tomography, Optical Coherence / instrumentation*
  • Transducers*