Regional TNFα mapping in the brain reveals the striatum as a neuroinflammatory target after ventricular fibrillation cardiac arrest in rats

Resuscitation. 2014 May;85(5):694-701. doi: 10.1016/j.resuscitation.2014.01.033. Epub 2014 Feb 12.

Abstract

Cardiac arrest (CA) triggers neuroinflammation that could play a role in a delayed neuronal death. In our previously established rat model of ventricular fibrillation (VF) CA characterized by extensive neuronal death, we tested the hypothesis that individual brain regions have specific neuroinflammatory responses, as reflected by regional brain tissue levels of tumor necrosis factor (TNF)α and other cytokines. In a prospective study, rats were randomized to 6min (CA6), 8min (CA8) or 10min (CA10) of VF CA, or sham group. Cortex, striatum, hippocampus and cerebellum were evaluated for TNFα and interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12 and interferon gamma at 3h, 6h or 14 d after CA by ELISA and Luminex. Immunohistochemistry was used to determine the cell source of TNFα. CA resulted in a selective TNFα response with significant regional and temporal differences. At 3h after CA, TNFα-levels increased in all regions depending on the duration of the insult. The most pronounced increase was observed in striatum that showed 20-fold increase in CA10 vs. sham, and 3-fold increase vs. CA6 or CA8 group, respectively (p<0.01). TNFα levels in striatum decreased between 3h and 6h, but increased in other regions between 3h and 14 d. TNFα levels remained twofold higher in CA6 vs. shams across brain regions at 14 d (p<0.01). In contrast to pronounced TNFα response, other cytokines showed only a minimal increase in CA6 and CA8 groups vs. sham in all brain regions with the exception that IL-1β increased twofold in cerebellum and striatum (p<0.01). TNFα colocalized with neurons. In conclusion, CA produced a duration-dependent acute TNFα response, with dramatic increase in the striatum where TNFα colocalized with neurons. Increased TNFα levels persist for at least two weeks. This TNFα surge contrasts the lack of an acute increase in other cytokines in brain after CA. Given that striatum is a selectively vulnerable brain region, our data suggest possible role of neuronal TNFα in striatum after CA and identify therapeutic targets for future experiments. This study was approved by the University of Pittsburgh IACUC 1002340A-3.

Keywords: Cardiac arrest; Cytokines; Neuroinflammation; Resuscitation; TNFα.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cardiopulmonary Resuscitation
  • Corpus Striatum / metabolism*
  • Cytokines / metabolism
  • Enzyme-Linked Immunosorbent Assay
  • Heart Arrest / pathology*
  • Male
  • Monitoring, Physiologic
  • Neurons / pathology*
  • Prospective Studies
  • Random Allocation
  • Rats
  • Rats, Sprague-Dawley
  • Tumor Necrosis Factor-alpha / metabolism*
  • Ventricular Fibrillation / pathology*

Substances

  • Cytokines
  • Tumor Necrosis Factor-alpha