Polarized light sensitivity and orientation in coral reef fish post-larvae

PLoS One. 2014 Feb 7;9(2):e88468. doi: 10.1371/journal.pone.0088468. eCollection 2014.

Abstract

Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal / physiology*
  • Coral Reefs*
  • Cues
  • Fishes / physiology*
  • Light
  • Orientation / physiology*
  • Swimming / physiology

Grants and funding

This research was supported by Grant No 2008/144 from the United States-Israel Binational Science Foundation (BSF; http://www.bsf.org.il/BSFPublic/Default.aspx) to MK and CP, and Israeli Science Foundation Grant # 1081/10 to NS (ISF; http://www.isf.org.il/). DISC instrument development was funded by NSF-OTIC 1155698 to C. B. Paris. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.