Recent developments in microfluidic large scale integration

Curr Opin Biotechnol. 2014 Feb:25:60-8. doi: 10.1016/j.copbio.2013.08.014. Epub 2013 Sep 17.

Abstract

In 2002, Thorsen et al. integrated thousands of micromechanical valves on a single microfluidic chip and demonstrated that the control of the fluidic networks can be simplified through multiplexors [1]. This enabled realization of highly parallel and automated fluidic processes with substantial sample economy advantage. Moreover, the fabrication of these devices by multilayer soft lithography was easy and reliable hence contributed to the power of the technology; microfluidic large scale integration (mLSI). Since then, mLSI has found use in wide variety of applications in biology and chemistry. In the meantime, efforts to improve the technology have been ongoing. These efforts mostly focus on; novel materials, components, micromechanical valve actuation methods, and chip architectures for mLSI. In this review, these technological advances are discussed and, recent examples of the mLSI applications are summarized.

Publication types

  • Review

MeSH terms

  • Animals
  • Automation, Laboratory
  • Click Chemistry
  • Humans
  • Microfluidic Analytical Techniques / instrumentation
  • Microfluidic Analytical Techniques / methods*
  • Microfluidics / instrumentation
  • Microfluidics / methods*