Nanoscale characterization of TiO(2) films grown by atomic layer deposition on RuO(2) electrodes

ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2486-92. doi: 10.1021/am4049139. Epub 2014 Feb 10.

Abstract

Topography and leakage current maps of TiO2 films grown by atomic layer deposition on RuO2 electrodes using either a TiCl4 or a Ti(O-i-C3H7)4 precursor were characterized at nanoscale by conductive atomic force microscopy (CAFM). For both films, the leakage current flows mainly through elevated grains and not along grain boundaries. The overall CAFM leakage current is larger and more localized for the TiCl4-based films (0.63 nm capacitance equivalent oxide thickness, CET) compared to the Ti(O-i-C3H7)4-based films (0.68 nm CET). Both films have a physical thickness of ∼20 nm. The nanoscale leakage currents are consistent with macroscopic leakage currents from capacitor structures and are correlated with grain characteristics observed by topography maps and transmission electron microscopy as well as with X-ray diffraction.