Triggered release of doxorubicin from temperature-sensitive poly(N-(2-hydroxypropyl)-methacrylamide mono/dilactate) grafted liposomes

Biomacromolecules. 2014 Mar 10;15(3):1002-9. doi: 10.1021/bm401904u. Epub 2014 Feb 6.

Abstract

The objective of this study was to design temperature-sensitive liposomes with tunable release characteristics that release their content at an elevated temperature generated by high intensity focused ultrasound (HIFU) exposure. To this end, thermosensitive polymers of N-(2-hydroxypropyl)methacrylamide mono/dilactate of different molecular weights and composition with a cholesterol anchor (chol-pHPMAlac) were synthesized and grafted onto liposomes loaded with doxorubicin (DOX). The liposomes were incubated at different temperatures and their release kinetics were studied. A good correlation between the release-onset temperature of the liposomes and the cloud point (CP) of chol-pHPMAlac was found. However, release took place at significantly higher temperatures than the CP of chol-pHPMAlac, likely at the CP, the dehydration and thus hydrophobicity is insufficient to penetrate and permeabilize the liposomal membrane. Liposomes grafted with chol-pHPMAlac with a CP of 11.5 °C released 89% DOX within 5 min at 42 °C while for the liposomes grafted with a polymer with CP of 25.0 °C, a temperature of 52 °C was needed to obtain the same extent of DOX release. At a fixed copolymer composition, an increase in molecular weight from 6.5 to 14.5 kDa decreased the temperature at which DOX was released with a release-onset temperature from 52 to 42 °C. Liposomes grafted with 5% chol-pHPMAlac exhibited a rapid release to a temperature increase, while at a grafting density of 2 and 10%, the liposomes were less sensitive to an increase in temperature. Sequential release of DOX was obtained by mixing liposomes grafted with chol-pHPMAlac having different CPs. Chol-pHPMAlac grafted liposomes released DOX nearly quantitatively after pulsed wave HIFU. In conclusion, the release of DOX from liposomes grafted with thermosensitive polymers of N-(2-hydroxypropyl)methacrylamide mono/dilactate can be tuned to the characteristics and the grafting density of chol-pHPMAlac, making these liposomes attractive for local drug delivery using hyperthermia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylamides / administration & dosage
  • Acrylamides / chemistry
  • Cell Line, Tumor
  • Doxorubicin / administration & dosage*
  • Doxorubicin / chemistry
  • Drug Delivery Systems*
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Liposomes / administration & dosage*
  • Liposomes / chemistry
  • Polymers / administration & dosage
  • Polymers / chemistry*
  • Temperature

Substances

  • Acrylamides
  • Liposomes
  • Polymers
  • Doxorubicin
  • N-(2-hydroxypropyl)methacrylamide