Characterization and application of electrospun alumina nanofibers

Nanoscale Res Lett. 2014 Jan 27;9(1):44. doi: 10.1186/1556-276X-9-44.

Abstract

Alumina nanofibers were prepared by a technique that combined the sol-gel and electrospinning methods. The solution to be electrospun was prepared by mixing aluminum isopropoxide (AIP) in ethanol, which was then refluxed in the presence of an acid catalyst and polyvinylpyrolidone (PVP) in ethanol. The characterization results showed that alumina nanofibers with diameters in the range of 102 to 378 nm were successfully prepared. On the basis of the results of the XRD and FT-IR, the alumina nanofibers calcined at 1,100°C were identified as comprising the α-alumina phase, and a series of phase transitions such as boehmite → γ-alumina → α-alumina were observed from 500°C to 1,200°C. The pore size of the obtained γ-alumina nanofibers is approximately 8 nm, and it means that they are mesoporous materials. The kinetic study demonstrated that MO adsorption on alumina nanofibers can be seen that the pseudo-second-order kinetic model fits better than the pseudo-first-order kinetic model.