Enhanced large conductance K+ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats

Am J Physiol Heart Circ Physiol. 2014 Apr 1;306(7):H989-H1000. doi: 10.1152/ajpheart.00636.2013. Epub 2014 Jan 24.

Abstract

Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1(BN) congenic strain. However, the mechanisms involved remain to be determined. The present study examined the role of the large conductance calcium-activated potassium (BK) channel in impairing the MR in FHH rats. Whole-cell patch-clamp studies of cerebral vascular smooth muscle cells (VSMCs) revealed that iberiotoxin (IBTX; BK inhibitor)-sensitive outward potassium (K+) channel current densities are four- to fivefold greater in FHH than in FHH.1(BN) congenic strain. Inside-out patches indicated that the BK channel open probability (NPo) is 10-fold higher and IBTX reduced NPo to a greater extent in VSMCs isolated from FHH than in FHH.1(BN) rats. Voltage sensitivity of the BK channel is enhanced in FHH as compared with FHH.1(BN) rats. The frequency and amplitude of spontaneous transient outward currents are significantly greater in VSMCs isolated from FHH than in FHH.1(BN) rats. However, the expression of the BK-α and -β-subunit proteins in cerebral vessels as determined by Western blot is similar between the two groups. Middle cerebral arteries (MCAs) isolated from FHH rats exhibited an impaired MR, and administration of IBTX restored this response. These results indicate that there is a gene on RNO1 that impairs MR in the MCAs of FHH rats by enhancing BK channel activity.

Keywords: cerebral blood flow; cerebral vascular disease; genes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Congenic
  • Calcium Signaling
  • Cerebrovascular Circulation*
  • Disease Models, Animal
  • Hypertension / genetics
  • Hypertension / metabolism*
  • Hypertension / physiopathology
  • Ion Channel Gating
  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits / metabolism
  • Large-Conductance Calcium-Activated Potassium Channel beta Subunits / metabolism
  • Large-Conductance Calcium-Activated Potassium Channels / antagonists & inhibitors
  • Large-Conductance Calcium-Activated Potassium Channels / metabolism*
  • Male
  • Membrane Potentials
  • Middle Cerebral Artery / metabolism
  • Middle Cerebral Artery / physiopathology
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / metabolism*
  • Muscle, Smooth, Vascular / physiopathology
  • Myocytes, Smooth Muscle / metabolism
  • Patch-Clamp Techniques
  • Potassium Channel Blockers / pharmacology
  • Rats
  • Rats, Inbred BN
  • Vasoconstriction*

Substances

  • Large-Conductance Calcium-Activated Potassium Channel alpha Subunits
  • Large-Conductance Calcium-Activated Potassium Channel beta Subunits
  • Large-Conductance Calcium-Activated Potassium Channels
  • Potassium Channel Blockers