Dispersible carbon nanotubes

Chemistry. 2014 Jan 27;20(5):1210-7. doi: 10.1002/chem.201303818. Epub 2013 Dec 20.

Abstract

A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed. To address this limitation, supramolecular bonds can be used to attach and to detach polymer chains from the surface of CNTs. The reversibility of supramolecular bonds offers an easy way to recycle CNTs as well as the possibility to disperse the same functional CNTs in any type of solvent, by simply adapting the chemical nature of the stabilizing chains to the dispersing medium. The concept of supramolecular functionalization can be applied to other particles, for example, silica or metal oxides, as well as to dispersing in polymer melts, films or coatings.

Keywords: carbon nanotubes; colloidal dispersions; recycling; steric stabilization; supramolecular bond.