Wildfire selectivity for land cover type: does size matter?

PLoS One. 2014 Jan 13;9(1):e84760. doi: 10.1371/journal.pone.0084760. eCollection 2014.

Abstract

Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested ([Formula: see text] = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Conservation of Natural Resources*
  • Fires*
  • Geography
  • Portugal
  • Regression Analysis

Grants and funding

This paper was supported by the Fundação para a Ciência e Tecnologia Ph.D. Grant SFRH/BD/40398/2007. JMCP participated in this research under the framework of research projects “Forest fire under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world (FUME)”, EC FP7 Grant Agreement No. 243888. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.