Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm

Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1927-32. doi: 10.1073/pnas.1317233111. Epub 2014 Jan 21.

Abstract

Here, we report advanced materials and devices that enable high-efficiency mechanical-to-electrical energy conversion from the natural contractile and relaxation motions of the heart, lung, and diaphragm, demonstrated in several different animal models, each of which has organs with sizes that approach human scales. A cointegrated collection of such energy-harvesting elements with rectifiers and microbatteries provides an entire flexible system, capable of viable integration with the beating heart via medical sutures and operation with efficiencies of ∼2%. Additional experiments, computational models, and results in multilayer configurations capture the key behaviors, illuminate essential design aspects, and offer sufficient power outputs for operation of pacemakers, with or without battery assist.

Keywords: biomedical implants; flexible electronics; heterogeneous integration; transfer printing; wearable electronics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Diaphragm / physiology*
  • Electric Power Supplies*
  • Electrophysiological Phenomena*
  • Heart / physiology*
  • Humans
  • Lung / physiology*
  • Motion*
  • Rats
  • Sheep