Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions

Environ Sci Technol. 2014;48(3):1436-42. doi: 10.1021/es403077b. Epub 2014 Jan 24.

Abstract

Leakage of CO2 from a deep storage formation into an overlying potable aquifer may adversely impact water quality and human health. Understanding CO2-water-rock interactions is therefore an important step toward the safe implementation of geologic carbon sequestration. This study targeted the geochemical response of siliclastic rock, specifically three sandstones of the Mesaverde Group in northwestern Colorado. To test the hypothesis that carbonate minerals, even when present in very low levels, would be the primary source of metals released into a CO2-impacted aquifer, two batch experiments were conducted. Samples were reacted for 27 days with water and CO2 at partial pressures of 0.01 and 1 bar, representing natural background levels and levels expected in an aquifer impacted by a small leakage, respectively. Concentrations of major (e.g., Ca, Mg) and trace (e.g., As, Ba, Cd, Fe, Mn, Pb, Sr, U) elements increased rapidly after CO2 was introduced into the system, but did not exceed primary Maximum Contaminant Levels set by the U.S. Environmental Protection Agency. Results of sequential extraction suggest that carbonate minerals, although volumetrically insignificant in the sandstone samples, are the dominant source of mobile metals. This interpretation is supported by a simple geochemical model, which could simulate observed changes in fluid composition through CO2-induced calcite and dolomite dissolution.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon Dioxide / analysis*
  • Carbon Sequestration*
  • Colorado
  • Computer Simulation*
  • Geologic Sediments / chemistry*
  • Groundwater / chemistry
  • Humans
  • Metals / analysis*
  • Models, Theoretical*
  • Partial Pressure
  • Water Quality

Substances

  • Metals
  • Carbon Dioxide