Ultrafast imaging in biomedical ultrasound

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):102-19. doi: 10.1109/TUFFC.2014.6689779.

Abstract

Although the use of ultrasonic plane-wave transmissions rather than line-per-line focused beam transmissions has been long studied in research, clinical application of this technology was only recently made possible through developments in graphical processing unit (GPU)-based platforms. Far beyond a technological breakthrough, the use of plane or diverging wave transmissions enables attainment of ultrafast frame rates (typically faster than 1000 frames per second) over a large field of view. This concept has also inspired the emergence of completely novel imaging modes which are valuable for ultrasound-based screening, diagnosis, and therapeutic monitoring. In this review article, we present the basic principles and implementation of ultrafast imaging. In particular, present and future applications of ultrafast imaging in biomedical ultrasound are illustrated and discussed.

Publication types

  • Review

MeSH terms

  • Algorithms*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted
  • Ultrasonography / methods*