Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead

PLoS One. 2013 Dec 31;8(12):e85586. doi: 10.1371/journal.pone.0085586. eCollection 2013.

Abstract

Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Migration*
  • Animals
  • Oncorhynchus mykiss*
  • Rivers / chemistry
  • Temperature*
  • Time Factors
  • Water / chemistry

Substances

  • Water

Grants and funding

This study was funded by the United States Army Corps of Engineers, Walla Walla District, with assistance provided by M. Shutters and K. Zelch. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.