Evaluating plasmonic transport in current-carrying silver nanowires

J Vis Exp. 2013 Dec 11:(82):e51048. doi: 10.3791/51048.

Abstract

Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support. In this context, metal nanowires are especially desirable for realizing dense routing networks. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires randomly distributed on a glass substrate. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Electric Conductivity
  • Metal Nanoparticles / chemistry*
  • Nanowires / chemistry*
  • Optics and Photonics / methods
  • Silver / chemistry*
  • Surface Plasmon Resonance / methods

Substances

  • Silver