Use of the antimicrobial peptide pardaxin (GE33) to protect against methicillin-resistant Staphylococcus aureus infection in mice with skin injuries

Antimicrob Agents Chemother. 2014;58(3):1538-45. doi: 10.1128/AAC.02427-13. Epub 2013 Dec 23.

Abstract

Antimicrobial peptides (AMPs) have recently been determined to be potential candidates for treating drug-resistant bacterial infections. Pardaxin (GE33), a marine antimicrobial peptide, has been reported to possess antimicrobial function. In this study, we investigated whether pardaxin promoted healing of contaminated wounds in mice. One square centimeter of outer skin was excised from the ventral region of mice, and a lethal dose of methicillin-resistant Staphylococcus aureus (MRSA) was applied in the presence or absence of methicillin, vancomycin, or pardaxin. While untreated mice and mice treated with methicillin died within 3 days, mice treated with pardaxin survived infection. Pardaxin decreased MRSA bacterial counts in the wounded region and also enhanced wound closure. Reepithelialization and dermal maturation were also faster in mice treated with pardaxin than in mice treated with vancomycin. In addition, pardaxin treatment controlled excess recruitment of monocytes and macrophages and increased the expression of vascular endothelial growth factor (VEGF). In conclusion, these results suggest that pardaxin is capable of enhancing wound healing. Furthermore, this study provides an excellent platform for comparing the antimicrobial activities of peptide and nonpeptide antibiotics.

Publication types

  • Retracted Publication

MeSH terms

  • Animals
  • Anti-Bacterial Agents / therapeutic use*
  • Bacterial Load
  • Female
  • Fish Venoms / therapeutic use*
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Mice
  • Mice, Inbred BALB C
  • Microbial Sensitivity Tests
  • Staphylococcal Skin Infections / drug therapy*
  • Staphylococcal Skin Infections / microbiology
  • Wound Healing / drug effects
  • Wound Infection / drug therapy
  • Wound Infection / microbiology

Substances

  • Anti-Bacterial Agents
  • Fish Venoms
  • pardaxin