Metaorganismal nutrient metabolism as a basis of cardiovascular disease

Curr Opin Lipidol. 2014 Feb;25(1):48-53. doi: 10.1097/MOL.0000000000000036.

Abstract

Purpose of review: Atherosclerosis and associated cardiovascular disease (CVD) remains the leading cause of mortality in Western societies. It is well accepted that the consumption of foods abundant in saturated fats and cholesterol, like meats, egg yolk and high-fat dairy products, are associated with increased CVD risk. New evidence suggests that trimethylamine (TMA)-containing nutrients within these foods, including phosphatidylcholine, choline, and L-carnitine, can enter into a microbial metabolic pathway that promotes CVD. In this review, we highlight the role of gut microbiota-driven nutrient metabolism as a novel pathway promoting CVD.

Recent findings: Recent studies demonstrate a link between ingestion of dietary phosphatidylcholine, choline, and L-carnitine and CVD risk. At the center of this pathway is gut microbiota-dependent synthesis of a metabolic intermediate called TMA, and subsequent host-driven conversion of TMA to trimethylamine-N-oxide (TMAO). Microbiota-dependent generation of TMAO is associated with increased risk of incident major adverse cardiovascular events in humans, and provision of TMAO promotes atherosclerosis in mice.

Summary: Microbial metabolism of TMA containing nutrients can lead to formation of the proatherogenic compound TMAO. Recent insights into this diet-microbe-host interaction provide new clues surrounding the pathogenesis of atherosclerosis, and may serve as a framework for new CVD therapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Atherosclerosis / metabolism
  • Cardiovascular Diseases / blood
  • Cardiovascular Diseases / metabolism*
  • Cardiovascular Diseases / therapy
  • Carnitine / metabolism
  • Diet
  • Humans
  • Methylamines / blood
  • Methylamines / metabolism
  • Risk

Substances

  • Methylamines
  • trimethyloxamine
  • Carnitine