Tuning plasmonic cloaks with an external magnetic field

Phys Rev Lett. 2013 Nov 22;111(21):215504. doi: 10.1103/PhysRevLett.111.215504. Epub 2013 Nov 21.

Abstract

We propose a mechanism to actively tune the operation of plasmonic cloaks with an external magnetic field by investigating electromagnetic scattering by a dielectric cylinder coated with a magneto-optical shell. In the long wavelength limit, we show that the presence of a magnetic field may drastically reduce the scattering cross section at all observation angles. We demonstrate that the application of magnetic fields can modify the operation wavelength without the need of changing material and/or geometrical parameters. We also show that applied magnetic fields can reversibly switch on and off the cloak operation. These results, which could be achieved for existing magneto-optical materials, are shown to be robust to material losses, so that they may pave the way for developing actively tunable, versatile plasmonic cloaks.