2-Diazo-1-(4-hydroxyphenyl)ethanone: a versatile photochemical and synthetic reagent

Photochem Photobiol Sci. 2014 Feb;13(2):324-41. doi: 10.1039/c3pp50305d.

Abstract

α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rearrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii rearrangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a-c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 31 ns with a rate for appearance of 4a of k = 7.1 × 10(6) s(-1) in aq. acetonitrile (1 : 1 v : v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acetophenones / chemistry*
  • Azo Compounds / chemistry*
  • Chemistry Techniques, Synthetic
  • Hydrogen-Ion Concentration
  • Indicators and Reagents / chemistry
  • Photochemical Processes*
  • Spectrophotometry, Infrared

Substances

  • Acetophenones
  • Azo Compounds
  • Indicators and Reagents
  • 4-hydroxyacetophenone