Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation

ACS Appl Mater Interfaces. 2014 Jan 8;6(1):421-8. doi: 10.1021/am404487b. Epub 2013 Dec 11.

Abstract

In this article, well-dispersed CeO2-ZnO composite hollow microspheres have been fabricated through a simple chemical reaction followed by annealing treatment. Amorphous zinc-cerium citrate hollow microspheres were first synthesized by dispersing zinc citrate hollow microspheres into cerium nitrate solution and then aging at room temperature for 1 h. By calcining the as-produced zinc-cerium citrate hollow microspheres at 500 °C for 2 h, CeO2-ZnO composite hollow microspheres with homogeneous composition distribution could be harvested for the first time. The resulting CeO2-ZnO composite hollow microspheres exhibit enhanced activity for CO oxidation compared with CeO2 and ZnO, which is due to well-dispersed small CeO2 particles on the surface of ZnO hollow microspheres and strong interaction between CeO2 and ZnO. Moreover, when Au nanoparticles are deposited on the surface of the CeO2-ZnO composite hollow microspheres, the full CO conversion temperature of the as-produced 1.0 wt % Au-CeO2-ZnO composites reduces from 300 to 60 °C in comparison with CeO2-ZnO composites. The significantly improved catalytic activity may be ascribed to the strong synergistic interplay between Au nanoparticles and CeO2-ZnO composites.