Parallel fabrication of plasmonic nanocone sensing arrays

Small. 2013 Dec 9;9(23):3987-92, 4088. doi: 10.1002/smll.201300449. Epub 2013 Jul 12.

Abstract

A fully parallel approach for the fabrication of arrays of metallic nanocones and triangular nanopyramids is presented. Different processes utilizing nanosphere lithography for the creation of etch masks are developed. Monolayers of spheres are reduced in size and directly used as masks, or mono- and double layers are employed as templates for the deposition of aluminum oxide masks. The masks are transferred into an underlying gold or silver layer by argon ion milling, which leads to nanocones or nanopyramids with very sharp tips. Near the tips the enhancement of an external electromagnetic field is particularly strong. This fact is confirmed by numerical simulations and by luminescence imaging in a confocal microscope. Such localized strong fields can amongst others be utilized for high-resolution, high-sensitivity spectroscopy and sensing of molecules near the tip. Arrays of such plasmonic nanostructures thus constitute controllable platforms for surface-enhanced Raman spectroscopy. A thin film of pentacene molecules is evaporated onto both nanocone and nanopyramid substrates, and the observed Raman enhancement is evaluated.

Keywords: SERS; etch masks; nanocones; nanosphere lithography; plasmonics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Nanospheres / chemistry
  • Nanostructures / chemistry*
  • Nanotechnology
  • Spectrum Analysis, Raman