Changes in DXA and quantitative CT measures of musculoskeletal outcomes following pediatric renal transplantation

Am J Transplant. 2014 Jan;14(1):124-32. doi: 10.1111/ajt.12524. Epub 2013 Dec 3.

Abstract

This prospective study evaluated changes in dual energy X-ray absorptiometry (DXA) whole body bone mineral content (WB-BMC) and spine areal bone mineral density (spine-BMD), and tibia quantitative computed tomography (QCT) trabecular and cortical volumetric BMD and cortical area in 56 children over 12 months following renal transplantation. At transplant, spine-BMD Z-scores were greater in younger recipients (<13 years), versus 898 reference participants (p < 0.001). In multivariate models, greater decreases in spine-BMD Z-scores were associated with greater glucocorticoid dose (p < 0.001) and declines in parathyroid hormone levels (p = 0.008). Changes in DXA spine-BMD and QCT trabecular BMD were correlated (r = 0.47, p < 0.01). At 12 months, spine-BMD Z-scores remained elevated in younger recipients, but did not differ in older recipients (≥ 13) and reference participants. Baseline WB-BMC Z-scores were significantly lower than reference participants (p = 0.02). Greater glucocorticoid doses were associated with declines in WB-BMC Z-scores (p < 0.001) while greater linear growth was associated with gains in WB-BMC Z-scores (p = 0.01). Changes in WB-BMC Z-scores were associated with changes in tibia cortical area Z-scores (r = 0.52, p < 0.001), but not changes in cortical BMD Z-scores. Despite resolution of muscle deficits, WB-BMC Z-scores at 12 months remained significantly reduced. These data suggest that spine and WB DXA provides insight into trabecular and cortical outcomes following pediatric renal transplantation.

Keywords: Bone mineral density; nutrition; pediatric; renal transplantation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorptiometry, Photon
  • Adolescent
  • Body Composition
  • Bone Density / physiology*
  • Child
  • Female
  • Humans
  • Kidney Transplantation*
  • Male
  • Parathyroid Hormone / metabolism
  • Prospective Studies
  • Spine / metabolism
  • Tibia / diagnostic imaging
  • Tomography, X-Ray Computed
  • Young Adult

Substances

  • Parathyroid Hormone