Extended hierarchical Bayesian diffuse optical tomography for removing scalp artifact

Biomed Opt Express. 2013 Oct 10;4(11):2411-32. doi: 10.1364/BOE.4.002411. eCollection 2013.

Abstract

Functional near-infrared spectroscopy (fNIRS) can non-invasively measure hemodynamic responses in the cerebral cortex with a portable apparatus. However, the observation signal in fNIRS measurements is contaminated by the artifact signal from the hemodynamic response in the scalp. In this paper, we propose a method to separate the signals from the cortex and the scalp by estimating both hemodynamic changes by diffuse optical tomography (DOT). In the inverse problem of DOT, we introduce smooth regularization to the hemodynamic change in the scalp and sparse regularization to that in the cortex based on the nature of the hemodynamic responses. These appropriate regularization models, with the spatial information of optical paths of many measurement channels, allow three-dimensional reconstruction of both hemodynamic changes. We validate our proposed method through two-layer phantom experiments and MRI-based head-model simulations. In both experiments, the proposed method simultaneously estimates the superficial smooth activity in the scalp area and the deep localized activity in the cortical area.

Keywords: (100.3010) Image reconstruction techniques; (100.3190) Inverse problems; (170.3880) Medical and biological imaging.