A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films

Rev Sci Instrum. 2013 Nov;84(11):115110. doi: 10.1063/1.4830295.

Abstract

Combinatorial metrology has evolved as a useful approach to rapidly determine the composition-structure-property relationships for solid solution systems in a far more efficient way than the traditional one composition at a time approach. The success of this method applied in thermoelectric (TE) research relies on screening tools to evaluate the TE properties for a combinatorial library. We report here on a thermoelectric screening tool capable of performing temperature dependent measurement of the Seebeck coefficient and electrical resistivity from 300 K to 800 K. The validity of the apparatus is demonstrated by screening the power factor of a filled skutterudite combinatorial film at room temperature and at elevated temperatures as well. The accuracy of the measurement is verified using the low temperature Seebeck coefficient Standard Reference Material (NIST SRM 3451) and a heavily doped SiGe specimen for high temperature comparison. Several important parameters, such as measurement atmosphere, film substrate, and probe configuration, are identified that directly affect the Seebeck coefficient measurement in this and other similar apparatus.