One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods

J Colloid Interface Sci. 2014 Feb 1:415:32-8. doi: 10.1016/j.jcis.2013.10.015. Epub 2013 Oct 21.

Abstract

The synthesis in one pot(1) of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials from commercially available superhydrophilic cloth substrates of varying texture is described for the first time. Surfaces of 'rough' textured cloth and 'smooth' textured cloth were simultaneously rendered superhydrophobic by growing zinc oxide (ZnO) nanorods by a hydrothermal process in the same chemical bath. Contact angle hysteresis and water pendant drop tests revealed strong water adhesion to ZnO microrod-treated rough cloth. The combination of water contact angle >150° and strong adhesion is indicative of the 'rose petal effect' with potential for water pinning. Smooth cloth with ZnO nanorods exhibited no adhesion to water droplets with facilitative roll-off. The combination of water contact angle >150° and weak to no adhesion with water is indicative of the 'lotus leaf effect' with potential for self-cleaning. Pendant water drop tests indicated cohesive failure of water on rough cloth coated with ZnO nanorods. Natural rose petals demonstrated adhesive failure between the petal surface and water droplet. A parsimonious explanation is presented. We also describe the development of superhydrophobic clothes without the need for special conditions or further chemical modification.

Keywords: Cloth; Contact angle; Lotus leaf; Microrod; Nanorod; Pendant drop; Rose petal; Sliding angle; Superhydrophobic; Zinc oxide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hydrophobic and Hydrophilic Interactions
  • Microscopy, Electron, Scanning
  • Nanotubes / chemistry*
  • Nanotubes / ultrastructure
  • Surface Properties
  • Textiles*
  • Water / chemistry*
  • Zinc Oxide / chemistry*

Substances

  • Water
  • Zinc Oxide