Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction

J Nanosci Nanotechnol. 2013 Nov;13(11):7454-8. doi: 10.1166/jnn.2013.7853.

Abstract

Silver nanowires have unique electrical, thermal and optical properties, which support their potential application in numerous fields including catalysis, electronics, optoelectronics, sensing, and surface-enhanced spectroscopy. Especially, their application such as catalysts for alkaline fuel cells (AFCs) have attracted much interest because of their superior electrical conductivity over that of any metal and their lower cost compared to Pt. In this study, multiwalled carbon nanotubes (MWCNTs)-incorporated bacterial cellulose (BC) membrane electrode with silver nanowire catalyst was prepared. First, acid-treated MWCNTs were incorporated into BC membranes and then freeze-dried after solvent exchange to tert-butanol in order to maintain the 3D-network macroporous structure. Second, silver nanowires synthesized by polyol process were introduced onto the surface of the MWCNTs-incorporated BC membrane through easy vacuum filtration. Finally, thermal treatment was carried out to confirm the effect of the PVP on the silver nanowire catalysts toward oxygen reduction reaction. The electrode with thermally treated silver nanowire had great electrocatalytic activity compared with non-treated one. These results suggest that the MWCNTs-incorporated BC electrode with silver nanowire catalysts after thermal treatment could be potentially used in cathodes of AFCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Cellulose / chemistry*
  • Electrodes*
  • Equipment Design
  • Equipment Failure Analysis
  • Gluconobacter / metabolism*
  • Membranes, Artificial*
  • Nanotubes, Carbon / chemistry*
  • Nanotubes, Carbon / ultrastructure
  • Nanowires / chemistry*
  • Nanowires / ultrastructure
  • Oxidation-Reduction
  • Oxygen / chemistry*
  • Particle Size
  • Silver / chemistry

Substances

  • Membranes, Artificial
  • Nanotubes, Carbon
  • Silver
  • Cellulose
  • Oxygen