Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation

Appl Biochem Biotechnol. 2014 Feb;172(3):1553-64. doi: 10.1007/s12010-013-0612-5. Epub 2013 Nov 13.

Abstract

The development of technologies for cellulosic ethanol production by simultaneous saccharification and fermentation (SSF) depends on the use of microorganisms with high fermentative rates and thermotolerance. In this study, the ability of five Kluyveromyces marxianus strains to produce ethanol from glucose at 45 °C was investigated. The highest fermentative parameters were observed with K. marxianus NRRL Y-6860, which was then further studied. An initial evaluation of the oxygen supply on ethanol production by the selected yeast and a comparison of SSF process from acid pretreated rice straw between K. marxianus NRRL Y-6860 and Saccharomyces cerevisiae at 30 and 45 °C were carried out. Under the lowest evaluated conditions of aeration and agitation, K. marxianus NRRL Y-6860 produced 21.5 g/L ethanol from 51.3 g/L glucose corresponding to YP/S of 0.44 g/g and QP of 3.63 g/L h. In the SSF experiments, K. marxianus NRRL Y-6860 was more efficient than S. cerevisiae at both evaluated temperatures (30 and 45 °C), attained at the highest temperature an ethanol yield of 0.24 g/g and productivity of 1.44 g/L h.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cellulose / chemistry*
  • Cellulose / metabolism
  • Ethanol / chemical synthesis*
  • Fermentation*
  • Glucose / metabolism
  • Hot Temperature
  • Kluyveromyces / chemistry
  • Kluyveromyces / metabolism

Substances

  • Ethanol
  • Cellulose
  • Glucose