"Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions

Acc Chem Res. 2014 Feb 18;47(2):494-503. doi: 10.1021/ar400168s. Epub 2013 Nov 11.

Abstract

Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl bromides and similar values for aryl iodides at 28 °C.) Sonogashira reactions catalyzed by these PdNPs are quantitative with only 0.01% Pd/mol substrate. Kato's group has reported remarkable catalytic efficiencies for mesoporous catalysts formed by polyamidoamine (PAMAM) dendrimer polymerizations. These and other mesoporous structures could allow for catalyst recycling, with efficiencies approaching the "homeopathic" behavior. In recent examples of Suzuki-Miyaura reactions of aryl chlorides, chemists achieved truly "homeopathic" catalysis when a surfactant such as a tetra-n-butylammonium halide or an imidazolium salt was used in stoichiometric quantities with substrate. These results suggest that the reactive halide anion of the salt attacks the neutral Pd species to form a palladate. In the case of aryl chlorides, the reaction may occur through the difficult, rate-limiting oxidative-addition step.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bromides / chemistry
  • Chemistry Techniques, Synthetic / methods*
  • Chlorides / chemistry
  • Dendrimers / chemistry*
  • Ligands
  • Metal Nanoparticles / chemistry*
  • Molecular Structure
  • Palladium / chemistry*
  • Polyethylene Glycols / chemistry

Substances

  • Bromides
  • Chlorides
  • Dendrimers
  • Ligands
  • triethylene glycol
  • Polyethylene Glycols
  • Palladium