A cardiovascular mathematical model of graded head-up tilt

PLoS One. 2013 Oct 29;8(10):e77357. doi: 10.1371/journal.pone.0077357. eCollection 2013.

Abstract

A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to [Formula: see text]. The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Baroreflex / physiology
  • Blood Pressure / physiology
  • Cardiac Output / physiology
  • Female
  • Heart / physiology*
  • Heart / physiopathology
  • Heart Failure / physiopathology*
  • Heart Rate / physiology
  • Hemodynamics / physiology
  • Humans
  • Male
  • Models, Cardiovascular*
  • Myocardial Contraction / physiology
  • Posture / physiology*
  • Pressoreceptors / physiology*
  • Pressoreceptors / physiopathology
  • Pulmonary Circulation / physiology
  • Stroke Volume / physiology
  • Tilt-Table Test
  • Vascular Resistance / physiology

Grants and funding

The authors would like to thank the Australian Research Council Linkages scheme and the Ministry of Higher Education (MOHE) of Malaysia (UM.C/HIR/MOHE/ENG/50) for providing the research grant support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.